welcome to XRM blog

Keep in touch with latest CRM/ERP articles

To remain competitive your organisation must be efficient across the business process spectrum. To do so you need to take sound decisions based on a balance between the cost and risk. To do so you will be heavily dependent on your content management in itself needs...

image
Blog

Understanding Relationships in Power BI

By Divya Mishra on 5/9/2025

When building reports in Power BI, it’s common to work with multiple tables. But to make the data meaningful and interactive, we need to connect these tables using relationships. 

Here, we’ll understand what relationships are, the different types available in Power BI, and how to create and manage them effectively. 

What is a Relationship in Power BI? 

A relationship in Power BI links two tables using a common column — just like how a VLOOKUP works in Excel. 

For example, consider the following two tables: 

Sales: Contains OrderID, ProductID, Quantity, and Date 

Products: Contains ProductID, ProductName, and Category 

To display product names in your sales report, you’ll need to link ProductID in both tables. That’s a relationship! 

Types of Relationships in Power BI 

Power BI supports four types of relationships: 

1. One-to-Many (1:*) 

Most common type 

Example: One product can appear in many sales records 

2. Many-to-One (*:1) 

While it appears reversed, Power BI internally handles One-to-Many and Many-to-One the same way. The difference lies in identifying which table acts as the lookup (one side) and which serves as the fact table (many side). 

3. Many-to-Many (*:*) 

Used when both tables contain duplicate values in the relationship column. 

4. One-to-One (1:1) 

Both tables have unique values in the relationship column 

How to Create a Relationship? 

Method 1: Automatically (Power BI Autodetect) 

When you import tables, Power BI often detects relationships automatically if matching column names and values exist. 

To check: 

  1. Navigate to the Model View (icon on the left sidebar) 

Rectangle 1, ShapeA screenshot of a computer

Description automatically generated, Picture 

  1. Hover over the relationship line to see details. 

Picture 1, Picture 

  1. Double-click on that line to edit if needed. 

Picture 1, Picture 

Method 2: Manually 

  1. Open Model View 

A screenshot of a computer

Description automatically generated, Picture 

  1. Drag a field from one table to the matching field in another table. A new relationship popup will appear. 

Picture 1, Picture 

  1. In the Create Relationship window: 
  • Choose Cardinality (e.g., One-to-Many) 
  • Set Cross Filter Direction (usually Single) and then save it. 

Advanced: 

  1. Cross Filter Direction in Power BI:  

Cross filter direction defines how filtering works between two connected tables. 

Single (→): In this mode, filtering occurs in only one direction—from the one-side table (usually a dimension or reference table) to the many-side table (commonly the fact table). This approach is widely used due to its simplicity and better performance in typical data models. 

Use this in most cases, especially in star schemas, for better performance and clarity. 

Both (↔): Filters flow in both directions. 

Use when you need to filter data across both tables, like in many-to-many relationships or complex reports. 

Use bidirectional filters cautiously, as they may introduce performance degradation or circular dependency errors in complex models. 

  1. Mark Relationship as Active: 

Between any two specific tables, Power BI permits only one relationship to be active at a time. Other relationships can exist but remain inactive unless explicitly activated using DAX. 

The active relationship serves as the primary link Power BI uses for generating visuals and performing calculations. 

Inactive relationships can still be used in DAX using the USERELATIONSHIP() function. 

Use Case: Use inactive relationships when you have multiple possible connections between tables (e.g., Order Date vs. Ship Date) but want to switch dynamically in calculations. 

  1. Apply Security Filter in Both Directions: 

This option appears when Row-Level Security (RLS) is used. It ensures that the security filter flows both ways between related tables. 

Use this if: 

You want RLS to restrict data across both tables (e.g., a user should only see data related to their assigned region across all tables). 

Be careful: It can cause unintended access limitations or circular filtering if not handled properly. 

#Creating Relationships in Power BI
#Data Relationships
#Many-to-One Relationship
#One-to-Many Relationship #Many-to-Many Relationship
#One-to-One Relationship
#Power BI Relationships
Blog Calendar
Blog Calendar List
2025 May  15  2
2025 Apr  33  6
2025 Mar  51  6
2025 Feb  41  6
2024 Nov  11  1
2024 Aug  6  1
2024 Apr  58  4
2024 Mar  149  4
2024 Feb  378  3
2024 Jan  33  7
2023 Dec  38  6
2023 Nov  508  5
2023 Oct  701  12
2023 Sep  1669  9
2023 Aug  511  6
2023 Jul  47  6
2023 Jun  26  4
2023 May  44  5
2023 Apr  78  5
2023 Mar  211  6
2023 Feb  171  5
2023 Jan  77  4
2022 Dec  96  7
2022 Nov  293  2
2022 Sep  13  1
2022 Aug  32  2
2022 Jun  11  2
2022 May  6  2
2022 Apr  12  2
2022 Mar  2  1
2022 Feb  2  1
2022 Jan  1  1
2021 Dec  4  1
2021 Nov  2  1
2021 Oct  2  1
2021 Sep  14  1
2021 Aug  49  5
2021 Jul  51  4
2021 Jun  1796  5
2021 May  42  3
2021 Apr  2249  3
2021 Mar  211  5
2021 Feb  2712  7
2021 Jan  4102  9
2020 Dec  574  7
2020 Sep  80  3
2020 Aug  783  3
2020 Jul  139  1
2020 Jun  98  3
2020 Apr  101  3
2020 Mar  19  2
2020 Feb  34  5
2020 Jan  48  7
2019 Dec  17  4
2019 Nov  40  1
2019 Jan  23  2
2018 Dec  132  4
2018 Nov  68  3
2018 Oct  18  3
2018 Sep  1258  11
2018 Aug  7  2
2018 Jun  20  1
2018 Jan  70  2
2017 Sep  590  5
2017 Aug  17  1
2017 Jul  17  2
2017 Jun  65  2
2017 May  21  1
2017 Apr  39  2
2017 Mar  139  4
2017 Feb  842  4
2016 Dec  207  3
2016 Nov  1009  8
2016 Oct  337  10
2016 Sep  797  6
2016 Aug  39  1
2016 Jun  1892  6
2016 May  114  3
2016 Jan  72  2
2015 Dec  720  6
2015 Nov  4  1
2015 Oct  13  1
2015 Sep  1471  6
2015 Aug  14  1
2015 Jul  129  2
2015 Jun  11  1
2015 May  20  1
2015 Apr  30  3
2015 Mar  80  3
2015 Jan  5350  4
2014 Dec  18  1
2014 Nov  2260  4
2014 Oct  69  1
2014 Sep  107  2
2014 Aug  5331  1
2014 Jul  49  2
2014 Apr  2598  12
2014 Mar  307  17
2014 Feb  223  6
2014 Jan  1510  16
2013 Dec  21  2
2013 Nov  694  2
2013 Oct  256  3
2013 Sep  13  1
2013 Aug  40  3
2013 Jul  214  1
2013 Apr  61  6
2013 Mar  2388  10
2013 Feb  131  3
2013 Jan  351  2
2012 Nov  62  2
2012 Oct  518  10
Tag Cloud
Interested in our services? Still not sure about project details? get a quote